Вопрос:

Упростите выражение: a) $$3\sqrt{3}+\sqrt{12}$$; б) $$\sqrt{45}-2\sqrt{5}$$; в) $$\sqrt{48}-10\sqrt{3}$$; г) $$4\sqrt{2}-\sqrt{50}$$; д) $$\sqrt{2}-\sqrt{32}+\sqrt{50}$$; е) $$2\sqrt{3}-\sqrt{27}+2\sqrt{48}$$; ж) $$\sqrt{8}+2\sqrt{18}-\sqrt{72}$$; з) $$2\sqrt{20}-\sqrt{45}-2\sqrt{12}$$; и) $$2\sqrt{28}-0.5\sqrt{24}+2\sqrt{7}$$.

Ответ:

Упрощение выражений с корнями

а) $$3\sqrt{3}+\sqrt{12} = 3\sqrt{3}+\sqrt{4\cdot3} = 3\sqrt{3}+2\sqrt{3} = 5\sqrt{3}$$

б) $$\sqrt{45}-2\sqrt{5} = \sqrt{9\cdot5}-2\sqrt{5} = 3\sqrt{5}-2\sqrt{5} = \sqrt{5}$$

в) $$\sqrt{48}-10\sqrt{3} = \sqrt{16\cdot3}-10\sqrt{3} = 4\sqrt{3}-10\sqrt{3} = -6\sqrt{3}$$

г) $$4\sqrt{2}-\sqrt{50} = 4\sqrt{2}-\sqrt{25\cdot2} = 4\sqrt{2}-5\sqrt{2} = - \sqrt{2}$$

д) $$\sqrt{2}-\sqrt{32}+\sqrt{50} = \sqrt{2}-\sqrt{16\cdot2}+\sqrt{25\cdot2} = \sqrt{2}-4\sqrt{2}+5\sqrt{2} = 2\sqrt{2}$$

е) $$2\sqrt{3}-\sqrt{27}+2\sqrt{48} = 2\sqrt{3}-\sqrt{9\cdot3}+2\sqrt{16\cdot3} = 2\sqrt{3}-3\sqrt{3}+8\sqrt{3} = 7\sqrt{3}$$

ж) $$\sqrt{8}+2\sqrt{18}-\sqrt{72} = \sqrt{4\cdot2}+2\sqrt{9\cdot2}-\sqrt{36\cdot2} = 2\sqrt{2}+6\sqrt{2}-6\sqrt{2} = 2\sqrt{2}$$

з) $$2\sqrt{20}-\sqrt{45}-2\sqrt{12} = 2\sqrt{4\cdot5}-\sqrt{9\cdot5}-2\sqrt{4\cdot3} = 4\sqrt{5}-3\sqrt{5}-4\sqrt{3} = \sqrt{5}-4\sqrt{3}$$

и) $$2\sqrt{28}-0.5\sqrt{24}+2\sqrt{7} = 2\sqrt{4\cdot7}-0.5\sqrt{4\cdot6}+2\sqrt{7} = 4\sqrt{7}-\sqrt{6}+2\sqrt{7} = 6\sqrt{7}-\sqrt{6}$$

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие