a) $$(a-3b)(a+3b)-(a-3b)^2$$
$$ (a-3b)(a+3b) = a^2 - (3b)^2 = a^2 - 9b^2 $$
$$ (a-3b)^2 = a^2 - 2 cdot a cdot 3b + (3b)^2 = a^2 - 6ab + 9b^2 $$
Тогда:
$$ a^2 - 9b^2 - (a^2 - 6ab + 9b^2) = a^2 - 9b^2 - a^2 + 6ab - 9b^2 = 6ab - 18b^2 = 6b(a-3b) $$
б) $$4x^3 cdot (-2x^2)^4$$
$$ (-2x^2)^4 = (-2)^4 cdot (x^2)^4 = 16x^8 $$
Тогда:
$$ 4x^3 cdot 16x^8 = 64x^{3+8} = 64x^{11} $$
Ответ: a) $$6b(a-3b)$$; б) $$64x^{11}$$