Вопрос:

В стакан, имеющий форму цилиндра, с площадью дна 20 см² налита вода. Гриша заметил, что если положить в этот стакан с водой 40 одинаковых скрепок, то уровень воды поднимается на 0,2 см. Чему равен объём одной скрепки?

Ответ:

Объем, на который поднимается вода, равен объему всех 40 скрепок. Вычислим этот объем: Площадь дна цилиндра (S = 20 , ext{см}^2). Высота, на которую поднимается вода (h = 0.2 , ext{см}). Объем, на который поднимается вода (объем 40 скрепок), вычисляется как: \[V = S cdot h = 20 , ext{см}^2 cdot 0.2 , ext{см} = 4 , ext{см}^3\] Теперь найдем объем одной скрепки: \[V_{\text{одной скрепки}} = \frac{V}{40} = \frac{4 , ext{см}^3}{40} = 0.1 , ext{см}^3\] Ответ: 0.1 см³
Убрать каракули
Смотреть решения всех заданий с фото

Похожие