Вопрос:

В треугольнике ABC ∠C = 90°, AB = 24 см, sin ∠B = 7/12. Найдите AC.

Ответ:

В прямоугольном треугольнике ABC, где угол C равен 90 градусам, синус угла B определяется как отношение противолежащего катета (AC) к гипотенузе (AB):
$$sin(\angle B) = \frac{AC}{AB}$$
Нам дано, что sin(∠B) = 7/12 и AB = 24 см. Нужно найти AC.
$$AC = AB \cdot sin(\angle B)$$
$$AC = 24 \cdot \frac{7}{12} = 2 \cdot 7 = 14$$
Ответ: 14 см
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие