Вопрос:

В треугольнике ABC проведена биссектриса CK. Найдите величину угла KCA, если угол ABC равен 82°, а угол BAC равен 58°.

Ответ:

Решение: 1. Найдем угол ACB в треугольнике ABC. Сумма углов в треугольнике равна 180°, поэтому: \(\angle ACB = 180^\circ - \angle ABC - \angle BAC = 180^\circ - 82^\circ - 58^\circ = 40^\circ\) 2. CK - биссектриса угла ACB, значит, она делит угол ACB пополам. Найдем угол KCA: \(\angle KCA = \frac{1}{2} \angle ACB = \frac{1}{2} \cdot 40^\circ = 20^\circ\) Ответ: 20°
Смотреть решения всех заданий с фото

Похожие