Сначала найдем угол A: ∠A = 180° - ∠B - ∠C = 180° - 15° - 45° = 120°
Теперь используем теорему синусов, чтобы найти AC:
$$\frac{AC}{sin(B)} = \frac{AB}{sin(C)}$$
$$\frac{AC}{sin(15°)} = \frac{5\sqrt{6}}{sin(45°)}$$
$$AC = \frac{5\sqrt{6} \cdot sin(15°)}{sin(45°)}$$
$$sin(15°) = \frac{\sqrt{6} - \sqrt{2}}{4}$$
$$sin(45°) = \frac{\sqrt{2}}{2}$$
$$AC = \frac{5\sqrt{6} \cdot (\frac{\sqrt{6} - \sqrt{2}}{4})}{\frac{\sqrt{2}}{2}} = \frac{5\sqrt{6} \cdot (\sqrt{6} - \sqrt{2})}{4} \cdot \frac{2}{\sqrt{2}} = \frac{5\sqrt{3} (\sqrt{6} - \sqrt{2})}{2} = \frac{5(3\sqrt{2} - \sqrt{6})}{2}$$
$$AC = 5\sqrt{3}(\sqrt{3} - 1) = 5\sqrt{3}(\sqrt{3} - 1) = 5(3 - \sqrt{3})$$
Далее, найдем радиус R описанной окружности:
$$\frac{AB}{sin(C)} = 2R$$
$$\frac{5\sqrt{6}}{sin(45°)} = 2R$$
$$R = \frac{5\sqrt{6}}{2sin(45°)} = \frac{5\sqrt{6}}{2(\frac{\sqrt{2}}{2})} = \frac{5\sqrt{6}}{\sqrt{2}} = 5\sqrt{3}$$
Ответ: AC = 5(3 - √3), R = 5√3