Используем теорему синусов:
$$\frac{AC}{sin(∠ABC)} = \frac{AB}{sin(∠ACB)}$$ $$\frac{4\sqrt{2}}{sin(45^\circ)} = \frac{6}{sin(∠ACB)}$$Выразим sin(∠ACB):
$$sin(∠ACB) = \frac{6 \cdot sin(45^\circ)}{4\sqrt{2}}$$Так как $$sin(45^\circ) = \frac{\sqrt{2}}{2}$$, то:
$$sin(∠ACB) = \frac{6 \cdot \frac{\sqrt{2}}{2}}{4\sqrt{2}} = \frac{3\sqrt{2}}{4\sqrt{2}} = \frac{3}{4}$$Ответ: sin ∠ACB = 3/4.