По теореме синусов:
$$\frac{BC}{\sin A} = \frac{AC}{\sin B}$$
$$\frac{7\sqrt{6}}{\sin 60^\circ} = \frac{AC}{\sin 45^\circ}$$
$$\frac{7\sqrt{6}}{\frac{\sqrt{3}}{2}} = \frac{AC}{\frac{\sqrt{2}}{2}}$$
$$AC = \frac{7\sqrt{6} \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}} = \frac{7\sqrt{6} \cdot \sqrt{2}}{\sqrt{3}} = \frac{7\sqrt{2} \cdot \sqrt{3} \cdot \sqrt{2}}{\sqrt{3}} = 7 \cdot 2 = 14$$
Ответ: 14