Вариант 2.
1. Решите уравнение:
a) $$2\sin x + \sqrt{2} = 0$$
$$\sin x = -\frac{\sqrt{2}}{2}$$
$$x = (-1)^{n+1} \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
б) $$2\cos x - 1 = 0$$
$$\cos x = \frac{1}{2}$$
$$x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
в) $$\tan x - 1 = 0$$
$$\tan x = 1$$
$$x = \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
г) $$\cot x - \sqrt{3} = 0$$
$$\cot x = \sqrt{3}$$
$$x = \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$$
2. Решите неравенство:
a) $$\sin t \ge \frac{\sqrt{2}}{2}$$
$$\frac{\pi}{4} + 2\pi n \le t \le \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}$$
б) $$\cos t < -\frac{\sqrt{3}}{2}$$
$$\frac{5\pi}{6} + 2\pi n < t < \frac{7\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
Ответ:
Вариант 2.
1.
a) $$x = (-1)^{n+1} \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
б) $$x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
в) $$x = \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
г) $$x = \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$$
2.
a) $$\frac{\pi}{4} + 2\pi n \le t \le \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}$$
б) $$\frac{5\pi}{6} + 2\pi n < t < \frac{7\pi}{6} + 2\pi n, n \in \mathbb{Z}$$