Вариант 1.
1. Решите уравнение:
a) $$2\sin x - 1 = 0$$
$$\sin x = \frac{1}{2}$$
$$x = (-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$$
б) $$2\cos x + \sqrt{3} = 0$$
$$\cos x = -\frac{\sqrt{3}}{2}$$
$$x = \pm \frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
в) $$\tan x + \sqrt{3} = 0$$
$$\tan x = -\sqrt{3}$$
$$x = -\frac{\pi}{3} + \pi n, n \in \mathbb{Z}$$
г) $$\cot x + 1 = 0$$
$$\cot x = -1$$
$$x = -\frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
2. Решите неравенство:
a) $$\sin t < -\frac{1}{2}$$
$$-\frac{5\pi}{6} + 2\pi n < t < -\frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
б) $$\cos t \le -\frac{1}{2}$$
$$\frac{2\pi}{3} + 2\pi n \le t \le \frac{4\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
Ответ:
Вариант 1.
1.
a) $$x = (-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$$
б) $$x = \pm \frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
в) $$x = -\frac{\pi}{3} + \pi n, n \in \mathbb{Z}$$
г) $$x = -\frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
2.
a) $$-\frac{5\pi}{6} + 2\pi n < t < -\frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
б) $$\frac{2\pi}{3} + 2\pi n \le t \le \frac{4\pi}{3} + 2\pi n, n \in \mathbb{Z}$$