Проверим, какие из выражений равны 1.
\(\frac{9}{11}\) : 11 - \(\frac{11}{9}\) : 9 = \(\frac{9}{11} \cdot \frac{1}{11}\) - \(\frac{11}{9} \cdot \frac{1}{9}\) = \(\frac{9}{121}\) - \(\frac{11}{81}\) ≠ 1
\(\frac{5}{11}\) : \(\frac{5}{11}\) + \(\frac{7}{9}\) : \(\frac{1}{7}\) - 2 \(\frac{49}{81}\) = \(\frac{5}{11} \cdot \frac{11}{5}\) + \(\frac{7}{9} \cdot \frac{7}{1}\) - \(\frac{211}{81}\) = 1 + \(\frac{49}{9}\) - \(\frac{211}{81}\) = 1 + \(\frac{49 \cdot 9}{9 \cdot 9}\) - \(\frac{211}{81}\) = 1 + \(\frac{441}{81}\) - \(\frac{211}{81}\) = 1 + \(\frac{441 - 211}{81}\) = 1 + \(\frac{230}{81}\) ≠ 1
\(\frac{3}{5}\) : 5 : \(\frac{25}{12}\) : \(\frac{1}{4}\) = \(\frac{3}{5} \cdot \frac{1}{5} \cdot \frac{12}{25} \cdot \frac{4}{1}\) = \(\frac{3 \cdot 1 \cdot 12 \cdot 4}{5 \cdot 5 \cdot 25 \cdot 1}\) = \(\frac{144}{625}\) ≠ 1
2 \(\frac{2}{3}\) : 3 : \(\frac{7}{9}\) : \(\frac{2}{7}\) = \(\frac{8}{3}\) : \(\frac{3}{1}\) : \(\frac{7}{9}\) : \(\frac{2}{7}\) = \(\frac{8}{3} \cdot \frac{1}{3} \cdot \frac{9}{7} \cdot \frac{7}{2}\) = \(\frac{8 \cdot 1 \cdot 9 \cdot 7}{3 \cdot 3 \cdot 7 \cdot 2}\) = \(\frac{504}{126}\) = 4 ≠ 1
Ответ: нет выражений, результат выполнения которых равняется 1.