Сначала упростим выражение:
$$\frac{3y-y^3}{(y-x)} \cdot \frac{3(x-y)}{x^2-y^2} = \frac{y(3-y^2)}{-(x-y)} \cdot \frac{3(x-y)}{(x-y)(x+y)} = -\frac{3y(3-y^2)}{(x-y)(x+y)} = \frac{-3y(3-y^2)}{x^2-y^2}$$Теперь подставим значения $$x = 4$$ и $$y = \frac{1}{4}$$:
$$\frac{-3 \cdot \frac{1}{4} (3 - (\frac{1}{4})^2)}{4^2 - (\frac{1}{4})^2} = \frac{-\frac{3}{4} (3 - \frac{1}{16})}{16 - \frac{1}{16}} = \frac{-\frac{3}{4} (\frac{48-1}{16})}{\frac{256-1}{16}} = \frac{-\frac{3}{4} \cdot \frac{47}{16}}{\frac{255}{16}} = -\frac{3 \cdot 47}{4 \cdot 255} = -\frac{141}{1020} = -\frac{47}{340}$$Ответ: $$\frac{-47}{340}$$