а) $$\frac{2}{7} \cdot \frac{7}{4} + 1\frac{1}{2} - \frac{5}{8}:3 = \frac{2 \cdot 7}{7 \cdot 4} + \frac{3}{2} - \frac{5}{8} \cdot \frac{1}{3} = \frac{14}{28} + \frac{3}{2} - \frac{5}{24} = \frac{1}{2} + \frac{3}{2} - \frac{5}{24} = \frac{12}{24} + \frac{36}{24} - \frac{5}{24} = \frac{12 + 36 - 5}{24} = \frac{43}{24} = 1\frac{19}{24}$$
б) $$14\frac{1}{7} - 1\frac{1}{3} : 5 + 2\frac{1}{2} : 3 = \frac{99}{7} - \frac{4}{3} : 5 + \frac{5}{2} : 3 = \frac{99}{7} - \frac{4}{3} \cdot \frac{1}{5} + \frac{5}{2} \cdot \frac{1}{3} = \frac{99}{7} - \frac{4}{15} + \frac{5}{6} = \frac{99 \cdot 30}{7 \cdot 30} - \frac{4 \cdot 14}{15 \cdot 14} + \frac{5 \cdot 35}{6 \cdot 35} = \frac{2970}{210} - \frac{56}{210} + \frac{175}{210} = \frac{2970 - 56 + 175}{210} = \frac{3089}{210} = 14\frac{149}{210}$$
в) $$6\frac{2}{11}: \frac{6}{11} - 1 + \frac{1}{2}: 2 = \frac{68}{11} : \frac{6}{11} - 1 + \frac{1}{2} \cdot \frac{1}{2} = \frac{68}{11} \cdot \frac{11}{6} - 1 + \frac{1}{4} = \frac{68}{6} - 1 + \frac{1}{4} = \frac{34}{3} - 1 + \frac{1}{4} = \frac{34 \cdot 4}{3 \cdot 4} - \frac{1 \cdot 12}{1 \cdot 12} + \frac{1 \cdot 3}{4 \cdot 3} = \frac{136}{12} - \frac{12}{12} + \frac{3}{12} = \frac{136 - 12 + 3}{12} = \frac{127}{12} = 10\frac{7}{12}$$
г) $$6:12 \cdot 1,6 - 0,35 + 0,15 : 4 = \frac{6}{12} \cdot 1,6 - 0,35 + \frac{0,15}{4} = 0,5 \cdot 1,6 - 0,35 + 0,0375 = 0,8 - 0,35 + 0,0375 = 0,45 + 0,0375 = 0,4875$$
Ответ: а) $$1\frac{19}{24}$$; б) $$14\frac{149}{210}$$; в) $$10\frac{7}{12}$$; г) 0,4875.