a) \(\frac{2}{7}\) + \(\frac{1}{2}\) - \(\frac{5}{8}\)
Приведем дроби к общему знаменателю 56:
\(\frac{2}{7}\) = \(\frac{2 \cdot 8}{7 \cdot 8}\) = \(\frac{16}{56}\)
\(\frac{1}{2}\) = \(\frac{1 \cdot 28}{2 \cdot 28}\) = \(\frac{28}{56}\)
\(\frac{5}{8}\) = \(\frac{5 \cdot 7}{8 \cdot 7}\) = \(\frac{35}{56}\)
\(\frac{16}{56}\) + \(\frac{28}{56}\) - \(\frac{35}{56}\) = \(\frac{16 + 28 - 35}{56}\) = \(\frac{9}{56}\)
\(\frac{9}{56}\) : 3 = \(\frac{9}{56}\) \(\cdot \frac{1}{3}\) = \(\frac{9 \cdot 1}{56 \cdot 3}\) = \(\frac{9}{168}\) = \(\frac{3}{56}\)
б) 14 \(\frac{1}{7}\) - \(\frac{1}{3}\)
14 \(\frac{1}{7}\) = \(\frac{14 \cdot 7 + 1}{7}\) = \(\frac{99}{7}\)
\(\frac{99}{7}\) - \(\frac{1}{3}\) = \(\frac{99 \cdot 3}{7 \cdot 3}\) - \(\frac{1 \cdot 7}{3 \cdot 7}\) = \(\frac{297}{21}\) - \(\frac{7}{21}\) = \(\frac{290}{21}\)
\(\frac{290}{21}\) : 5 = \(\frac{290}{21}\) \(\cdot \frac{1}{5}\) = \(\frac{290}{105}\) = \(\frac{58}{21}\)
\(\frac{58}{21}\) + \(\frac{2}{3}\) = \(\frac{58}{21}\) + \(\frac{2 \cdot 7}{3 \cdot 7}\) = \(\frac{58}{21}\) + \(\frac{14}{21}\) = \(\frac{72}{21}\) = \(\frac{24}{7}\) = 3 \(\frac{3}{7}\)
в) \(\frac{6}{11}\) : \(\frac{2}{11}\)
\(\frac{6}{11}\) : \(\frac{2}{11}\) = \(\frac{6}{11}\) \(\cdot \frac{11}{2}\) = \(\frac{6 \cdot 11}{11 \cdot 2}\) = \(\frac{66}{22}\) = 3
3 - \(\frac{1}{6}\) = \(\frac{3}{1}\) - \(\frac{1}{6}\) = \(\frac{3 \cdot 6}{1 \cdot 6}\) - \(\frac{1}{6}\) = \(\frac{18}{6}\) - \(\frac{1}{6}\) = \(\frac{17}{6}\)
\(\frac{17}{6}\) + \(\frac{1}{2}\) = \(\frac{17}{6}\) + \(\frac{1 \cdot 3}{2 \cdot 3}\) = \(\frac{17}{6}\) + \(\frac{3}{6}\) = \(\frac{20}{6}\) = \(\frac{10}{3}\)
\(\frac{10}{3}\) : 2 = \(\frac{10}{3}\) \(\cdot \frac{1}{2}\) = \(\frac{10}{6}\) = \(\frac{5}{3}\) = 1 \(\frac{2}{3}\)
г) 6 : 1,6 = 3,75
3,75 - 0,35 = 3,4
3,4 + 0,15 = 3,55
3,55 : 4 = 0,8875
Ответ: a) \(\frac{3}{56}\); б) 3 \(\frac{3}{7}\); в) 1 \(\frac{2}{3}\); г) 0,8875
Ты молодец! Продолжай решать примеры и дальше!