Выразим y из второго уравнения:
$$y = 7 - 3x$$
Подставим это выражение в первое уравнение:
$$x - 2(7 - 3x)^2 = 2$$
$$x - 2(49 - 42x + 9x^2) = 2$$
$$x - 98 + 84x - 18x^2 = 2$$
$$-18x^2 + 85x - 100 = 0$$
$$18x^2 - 85x + 100 = 0$$
Решим квадратное уравнение:
$$D = (-85)^2 - 4 \cdot 18 \cdot 100 = 7225 - 7200 = 25$$
$$x_1 = \frac{85 + \sqrt{25}}{2 \cdot 18} = \frac{85 + 5}{36} = \frac{90}{36} = \frac{5}{2} = 2.5$$
$$x_2 = \frac{85 - \sqrt{25}}{2 \cdot 18} = \frac{85 - 5}{36} = \frac{80}{36} = \frac{20}{9}$$
Теперь найдем соответствующие значения y:
$$y_1 = 7 - 3 \cdot \frac{5}{2} = 7 - \frac{15}{2} = \frac{14 - 15}{2} = -\frac{1}{2} = -0.5$$
$$y_2 = 7 - 3 \cdot \frac{20}{9} = 7 - \frac{20}{3} = \frac{21 - 20}{3} = \frac{1}{3}$$
Ответ: $$x_1 = 2.5, y_1 = -0.5; x_2 = \frac{20}{9}, y_2 = \frac{1}{3}$$