Вопрос:

316. Является ли линейной функция, заданная формулой: a) y=2x-3; б) у = 7-9x; в) у=\frac{x}{2}+1; г) у =\frac{2}{x}+1; д) у = х² - 3; e) y =\frac{10x - 7}{5} -?

Ответ:

Линейной функцией является функция вида $$y = kx + b$$, где $$k$$ и $$b$$ - константы.

a) $$y = 2x - 3$$ - линейная функция, где $$k = 2$$, $$b = -3$$.

б) $$y = 7 - 9x$$ - линейная функция, где $$k = -9$$, $$b = 7$$.

в) $$y = \frac{x}{2} + 1$$ - линейная функция, где $$k = \frac{1}{2}$$, $$b = 1$$.

г) $$y = \frac{2}{x} + 1$$ - не является линейной, так как $$x$$ находится в знаменателе.

д) $$y = x^2 - 3$$ - не является линейной, так как есть $$x^2$$.

e) $$y = \frac{10x - 7}{5} = \frac{10x}{5} - \frac{7}{5} = 2x - \frac{7}{5}$$ - линейная функция, где $$k = 2$$, $$b = -\frac{7}{5}$$.

Ответ: линейными являются функции a, б, в, е.

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие