Задание 5. Найдите значение выражения:
1. \((\sqrt{20}-\sqrt{5})\cdot\sqrt{5} = \sqrt{20}\cdot\sqrt{5} - \sqrt{5}\cdot\sqrt{5} = \sqrt{100} - 5 = 10 - 5 = 5\).
2. \((\sqrt{18}-\sqrt{2})\cdot\sqrt{2} = \sqrt{18}\cdot\sqrt{2} - \sqrt{2}\cdot\sqrt{2} = \sqrt{36} - 2 = 6 - 2 = 4\).
3. \((\sqrt{48}-\sqrt{3})\cdot\sqrt{3} = \sqrt{48}\cdot\sqrt{3} - \sqrt{3}\cdot\sqrt{3} = \sqrt{144} - 3 = 12 - 3 = 9\).
4. \((\sqrt{50}+\sqrt{2})\cdot\sqrt{2} = \sqrt{50}\cdot\sqrt{2} + \sqrt{2}\cdot\sqrt{2} = \sqrt{100} + 2 = 10 + 2 = 12\).
5. \((\sqrt{45}+\sqrt{5})\cdot\sqrt{5} = \sqrt{45}\cdot\sqrt{5} + \sqrt{5}\cdot\sqrt{5} = \sqrt{225} + 5 = 15 + 5 = 20\).
6. \((\sqrt{27}+\sqrt{3})\cdot\sqrt{3} = \sqrt{27}\cdot\sqrt{3} + \sqrt{3}\cdot\sqrt{3} = \sqrt{81} + 3 = 9 + 3 = 12\).
7. \(\sqrt{5} \cdot 18 \cdot \sqrt{10} = 18 \cdot \sqrt{50} = 18 \cdot \sqrt{25 \cdot 2} = 18 \cdot 5 \cdot \sqrt{2} = 90\sqrt{2}\).
8. \(\sqrt{7} \cdot 12 \cdot \sqrt{21} = 12 \cdot \sqrt{147} = 12 \cdot \sqrt{49 \cdot 3} = 12 \cdot 7 \cdot \sqrt{3} = 84\sqrt{3}\).
9. \(\sqrt{2} \cdot 45 \cdot \sqrt{10} = 45 \cdot \sqrt{20} = 45 \cdot \sqrt{4 \cdot 5} = 45 \cdot 2 \cdot \sqrt{5} = 90\sqrt{5}\).
10. \(\sqrt{7} \cdot 45 \cdot \sqrt{35} = 45 \cdot \sqrt{245} = 45 \cdot \sqrt{49 \cdot 5} = 45 \cdot 7 \cdot \sqrt{5} = 315\sqrt{5}\).
11. \(\sqrt{11} \cdot 32 \cdot \sqrt{22} = 32 \cdot \sqrt{242} = 32 \cdot \sqrt{121 \cdot 2} = 32 \cdot 11 \cdot \sqrt{2} = 352\sqrt{2}\).
12. \(\sqrt{13} \cdot 18 \cdot \sqrt{26} = 18 \cdot \sqrt{338} = 18 \cdot \sqrt{169 \cdot 2} = 18 \cdot 13 \cdot \sqrt{2} = 234\sqrt{2}\).