Решение:
$$\frac{x^2 + 10x + 25}{x^2 - 9} : \frac{4x + 20}{2x + 6} = \frac{(x + 5)^2}{(x - 3)(x + 3)} \cdot \frac{2(x + 3)}{4(x + 5)} = \frac{(x + 5)^2 \cdot 2(x + 3)}{(x - 3)(x + 3) \cdot 4(x + 5)} = \frac{x + 5}{2(x - 3)}$$
Подставим x = -7:
\frac{-7 + 5}{2(-7 - 3)} = \frac{-2}{2(-10)} = \frac{-2}{-20} = \frac{1}{10} = 0.1
Ответ: 0.1