$$\frac{5}{4}x^2 - x + \frac{1}{9} = 0$$
$$D = b^2 - 4ac = (-1)^2 - 4 \cdot \frac{5}{4} \cdot \frac{1}{9} = 1 - \frac{5}{9} = \frac{9 - 5}{9} = \frac{4}{9}$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{1 + \sqrt{\frac{4}{9}}}{2 \cdot \frac{5}{4}} = \frac{1 + \frac{2}{3}}{\frac{5}{2}} = \frac{\frac{5}{3}}{\frac{5}{2}} = \frac{5}{3} \cdot \frac{2}{5} = \frac{2}{3}$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{1 - \sqrt{\frac{4}{9}}}{2 \cdot \frac{5}{4}} = \frac{1 - \frac{2}{3}}{\frac{5}{2}} = \frac{\frac{1}{3}}{\frac{5}{2}} = \frac{1}{3} \cdot \frac{2}{5} = \frac{2}{15}$$
Ответ: x₁ = $$\frac{2}{3}$$, x₂ = $$\frac{2}{15}$$