Вопрос:

3°. Разложите на множители: a) $$a^2b - ab^2$$; б) $$9x - x^3$$.

Смотреть решения всех заданий с листа

Ответ:

а) Разложим на множители выражение $$a^2b - ab^2$$.

Вынесем общий множитель $$ab$$ за скобки:

$$a^2b - ab^2 = ab(a - b)$$

Ответ: $$ab(a - b)$$


б) Разложим на множители выражение $$9x - x^3$$.

Вынесем общий множитель $$x$$ за скобки:

$$9x - x^3 = x(9 - x^2)$$

Заметим, что $$9 - x^2$$ является разностью квадратов, которую можно разложить по формуле $$a^2 - b^2 = (a - b)(a + b)$$, где $$a = 3$$ и $$b = x$$.

$$x(9 - x^2) = x(3^2 - x^2) = x(3 - x)(3 + x)$$

Ответ: $$x(3 - x)(3 + x)$$

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие