1) 3x²+x-12 = 1
3x²+x-12 = 3⁰
x² + x - 12 = 0
D = 1² - 4 * 1 * (-12) = 1 + 48 = 49
x₁ = (-1 + √49) / 2 = (-1 + 7) / 2 = 3
x₂ = (-1 - √49) / 2 = (-1 - 7) / 2 = -4
2) 2x²-7x+10 = 1
2x²-7x+10 = 2⁰
x² - 7x + 10 = 0
D = (-7)² - 4 * 1 * 10 = 49 - 40 = 9
x₁ = (7 + √9) / 2 = (7 + 3) / 2 = 5
x₂ = (7 - √9) / 2 = (7 - 3) / 2 = 2
3) 2(x-1)/(x-2) = 4
2(x-1)/(x-2) = 2²
(x-1)/(x-2) = 2
x - 1 = 2(x - 2)
x - 1 = 2x - 4
x = 3
4) 0,5x = 41/(x+1)
(1/2)x = (2²)1/(x+1)
2-x = 22/(x+1)
-x = 2/(x+1)
-x(x+1) = 2
-x² - x = 2
x² + x + 2 = 0
D = 1² - 4 * 1 * 2 = 1 - 8 = -7
Т.к. D < 0, уравнение не имеет решения.
Ответ: 1) x = 3, x = -4; 2) x = 5, x = 2; 3) x = 3; 4) нет решений