Решение №5:
a) (3\sqrt{2}-5\sqrt{2} = (3-5)\sqrt{2} = -2\sqrt{2})
б) (4\sqrt[3]{\frac{1}{3}}-3\sqrt[3]{\frac{1}{3}} = (4-3)\sqrt[3]{\frac{1}{3}} = \sqrt[3]{\frac{1}{3}})
в) (5\sqrt{1.2}+11\sqrt{1.2} = (5+11)\sqrt{1.2} = 16\sqrt{1.2})
г) (7\sqrt{a}-12\sqrt{a}-\sqrt{a} = (7-12-1)\sqrt{a} = -6\sqrt{a})
д) (\sqrt{\frac{5}{4}}-\frac{1}{2}\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{4}}-\frac{1}{2}\sqrt{5} = \frac{\sqrt{5}}{2}-\frac{1}{2}\sqrt{5} = (\frac{1}{2}-\frac{1}{2})\sqrt{5} = 0\sqrt{5} = 0)
е) (2\sqrt{x}-6\sqrt{x}-3\sqrt{x} = (2-6-3)\sqrt{x} = -7\sqrt{x})
ж) (\sqrt{n}-\frac{1}{3}\sqrt{n} = (1-\frac{1}{3})\sqrt{n} = \frac{2}{3}\sqrt{n})
з) (\sqrt{x}-5\sqrt{x}+2\sqrt{y}-3\sqrt{y} = (1-5)\sqrt{x}+(2-3)\sqrt{y} = -4\sqrt{x}-\sqrt{y})