Вопрос:

№4. Дано: a||b, c — секущая, ∠1 : ∠2 = 7 : 3 (рис. 3.). Найти: ∠1, ∠2

Смотреть решения всех заданий с листа

Ответ:

1. Дано: $$a||b$$, $$c$$ - секущая, $$∠1 : ∠2 = 7 : 3$$.

2. Найти: $$∠1, ∠2$$.

3. Решение:

Пусть $$x$$ - коэффициент пропорциональности, тогда $$∠1=7x$$, $$∠2=3x$$.

$$∠1$$ и $$∠2$$ - внутренние односторонние углы при параллельных прямых и секущей, следовательно,

$$∠1+∠2=180°$$.

$$7x+3x=180°$$

$$10x=180°$$

$$x=180°:10$$

$$x=18°$$

Тогда $$∠1=7x=7 \cdot 18°=126°$$, $$∠2=3x=3 \cdot 18°=54°$$.

4. Ответ: $$∠1=126°$$, $$∠2=54°$$.

Ответ: ∠1=126°, ∠2=54°

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие