3) Дано: $$\angle 1$$ на $$18^\circ$$ больше угла $$\angle 2$$.
Найти: $$\angle 3$$ и $$\angle 4$$.
Решение:
$$\angle 1 + \angle 2 = 180^\circ$$ (как смежные).
$$\angle 1 = \angle 2 + 18^\circ$$ (по условию).
$$\angle 2 + 18^\circ + \angle 2 = 180^\circ$$
$$2\cdot \angle 2 = 162^\circ$$
$$\angle 2 = 81^\circ$$
$$\angle 1 = 81^\circ + 18^\circ = 99^\circ$$
$$\angle 3 = 180^\circ - 20^\circ = 160^\circ$$ (как смежные).
$$\angle 4 = 20^\circ$$ (как вертикальные).
Ответ: $$\angle 3 = 160^\circ$$, $$\angle 4 = 20^\circ$$.