Решим уравнение:
$$(2x - 3)(5x + 1) = 2x + \frac{2}{5}$$
$$10x^2 + 2x - 15x - 3 = 2x + \frac{2}{5}$$
$$10x^2 + 2x - 15x - 2x - 3 - \frac{2}{5} = 0$$
$$10x^2 - 15x - \frac{17}{5} = 0$$
$$50x^2 - 75x - 17 = 0$$
$$D = (-75)^2 - 4 \cdot 50 \cdot (-17) = 5625 + 3400 = 9025$$
$$x_1 = \frac{75 + \sqrt{9025}}{2 \cdot 50} = \frac{75 + 95}{100} = \frac{170}{100} = \frac{17}{10} = 1.7$$
$$x_2 = \frac{75 - \sqrt{9025}}{2 \cdot 50} = \frac{75 - 95}{100} = \frac{-20}{100} = -\frac{1}{5} = -0.2$$
Ответ: x₁ = 1.7; x₂ = -0.2