Вопрос:

cos φ= 5/13. Радиус описанной окружности R = 26. Найдите x.

Ответ:

По теореме синусов:

$$\frac{x}{sin \varphi} = 2R$$ $$x = 2R \cdot sin \varphi$$ $$sin^2 \varphi + cos^2 \varphi = 1$$ $$sin^2 \varphi = 1 - cos^2 \varphi$$ $$sin \varphi = \sqrt{1 - cos^2 \varphi}$$ $$sin \varphi = \sqrt{1 - (\frac{5}{13})^2}$$ $$sin \varphi = \sqrt{1 - \frac{25}{169}}$$ $$sin \varphi = \sqrt{\frac{169 - 25}{169}}$$ $$sin \varphi = \sqrt{\frac{144}{169}}$$ $$sin \varphi = \frac{12}{13}$$ $$x = 2 \cdot 26 \cdot \frac{12}{13}$$ $$x = 4 \cdot 12$$ $$x = 48$$

Ответ: x = 48

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие