2.2. cos($$\frac{1}{2}$$x -$$\frac{\pi}{4}$$) =-$$\frac{\sqrt{2}}{2}$$
$$\frac{1}{2}$$x -$$\frac{\pi}{4}$$ = arccos(-$$\frac{\sqrt{2}}{2}$$)
$$\frac{1}{2}$$x -$$\frac{\pi}{4}$$ =$$\frac{3\pi}{4}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{3\pi}{4}$$ +$$\frac{\pi}{4}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\pi$$ + 2$$\pi$$n, n$$\isin$$Z
x=2$$\pi$$ + 4$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x -$$\frac{\pi}{4}$$ =-$$\frac{3\pi}{4}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =-$$\frac{3\pi}{4}$$ +$$\frac{\pi}{4}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =-$$\frac{\pi}{2}$$ + 2$$\pi$$n, n$$\isin$$Z
x=-$$\pi$$ + 4$$\pi$$n, n$$\isin$$Z
Ответ: x=2$$\pi$$ + 4$$\pi$$n, x=-$$\pi$$ + 4$$\pi$$n, n$$\isin$$Z