2.1. Решим уравнение sin($$\frac{1}{2}$$x -$$\frac{\pi}{6}$$) =$$\frac{1}{2}$$
$$\frac{1}{2}$$x -$$\frac{\pi}{6}$$ = arcsin($$\frac{1}{2}$$)
$$\frac{1}{2}$$x -$$\frac{\pi}{6}$$ =$$\frac{\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{\pi}{6}$$ +$$\frac{\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{\pi}{3}$$ + 2$$\pi$$n, n$$\isin$$Z
x =$$\frac{2\pi}{3}$$ + 4$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x -$$\frac{\pi}{6}$$ =$$\pi$$ -$$\frac{\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x -$$\frac{\pi}{6}$$ =$$\frac{5\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{5\pi}{6}$$ +$$\frac{\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\pi$$ + 2$$\pi$$n, n$$\isin$$Z
x =2$$\pi$$ + 4$$\pi$$n, n$$\isin$$Z
Ответ: x =$$\frac{2\pi}{3}$$ + 4$$\pi$$n, x =2$$\pi$$ + 4$$\pi$$n, n$$\isin$$Z