2.3. sin($$\frac{1}{2}$$x -$$\frac{5\pi}{6}$$) =$$\frac{\sqrt{3}}{2}$$
$$\frac{1}{2}$$x -$$\frac{5\pi}{6}$$ = arcsin($$\frac{\sqrt{3}}{2}$$)
$$\frac{1}{2}$$x -$$\frac{5\pi}{6}$$ =$$\frac{\pi}{3}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{\pi}{3}$$ +$$\frac{5\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{7\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
x =$$\frac{7\pi}{3}$$ + 4$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x -$$\frac{5\pi}{6}$$ =$$\pi$$ -$$\frac{\pi}{3}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x -$$\frac{5\pi}{6}$$ =$$\frac{2\pi}{3}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{2\pi}{3}$$ +$$\frac{5\pi}{6}$$ + 2$$\pi$$n, n$$\isin$$Z
$$\frac{1}{2}$$x =$$\frac{3\pi}{2}$$ + 2$$\pi$$n, n$$\isin$$Z
x=3$$\pi$$ + 4$$\pi$$n, n$$\isin$$Z
Ответ: x =$$\frac{7\pi}{3}$$ + 4$$\pi$$n, x=3$$\pi$$ + 4$$\pi$$n, n$$\isin$$Z