Вопрос:

4. Дана треугольная призма $$ABCA_1B_1C_1$$. Выберите из предложенного списка пары скрещивающихся прямых. 1) прямые $$AB$$ и $$BC$$ 2) прямые $$A_1B_1$$ и $$CC_1$$ 3) прямые $$AA_1$$ и $$BB_1$$ 4) прямые $$A_1B_1$$ и $$C_1B_1$$ В ответе запишите номера выбранных пар прямых без пробелов, запятых и других дополнительных символов.

Ответ:

Скрещивающиеся прямые - это прямые, которые не лежат в одной плоскости и не пересекаются. 1) Прямые $$AB$$ и $$BC$$ лежат в плоскости $$ABC$$ и пересекаются в точке $$B$$, поэтому они не скрещивающиеся. 2) Прямые $$A_1B_1$$ и $$CC_1$$ - $$A_1B_1$$ лежит в плоскости $$A_1B_1C_1$$, $$CC_1$$ перпендикулярна этой плоскости. Прямые не пересекаются и не параллельны, значит они скрещивающиеся. 3) Прямые $$AA_1$$ и $$BB_1$$ параллельны, значит они не скрещивающиеся. 4) Прямые $$A_1B_1$$ и $$C_1B_1$$ лежат в плоскости $$A_1B_1C_1$$ и пересекаются в точке $$B_1$$, поэтому они не скрещивающиеся. Таким образом, только пара прямых под номером 2 является скрещивающейся. Ответ: 2
Смотреть решения всех заданий с фото
Подать жалобу Правообладателю

Похожие