1) Найдем коэффициент подобия квадратов.
Отношение площадей подобных фигур равно квадрату коэффициента подобия. Обозначим сторону первого квадрата $$a_1$$, его площадь $$S_1$$. Аналогично, сторону и площадь второго квадрата обозначим $$a_2$$ и $$S_2$$ соответственно. Коэффициент подобия обозначим $$k$$. Тогда:
$$k^2 = \frac{S_2}{S_1} = \frac{36}{9} = 4$$Следовательно,
$$k = \sqrt{4} = 2$$2) Найдем сторону второго квадрата.
Стороны подобных фигур относятся как коэффициент подобия, то есть:
$$k = \frac{a_2}{a_1}$$Тогда:
$$a_2 = k \cdot a_1 = 2 \cdot 3 = 6 \text{ см}$$Ответ: 6 см.