1) Векторы коллинеарны, если их координаты пропорциональны. То есть:
$$\\frac{2}{9} = \\frac{p}{-3}$$.
$$p = \\frac{2 \\cdot (-3)}{9} = -\\frac{6}{9} = -\\frac{2}{3}$$.
2) Векторы перпендикулярны, если их скалярное произведение равно нулю.
$$\\vec{m} \\cdot \\vec{n} = 2 \\cdot 9 + p \\cdot (-3) = 0$$.
$$18 - 3p = 0$$.
$$3p = 18$$.
$$p = 6$$.
Ответ: 1) $$p = -\\frac{2}{3}$$ 2) $$p = 6$$.