Новые
Конспекты уроков
Таблицы
Банк заданий
Диктанты
Сочинения
Изложения
Краткие содержания
Читательский дневник
Блог
11 класс
Алгебра
Английский
Биология
География
Геометрия
История
Русский
10 класс
Алгебра
Английский
Биология
География
Геометрия
История
Обществознание
Русский
Физика
Химия
9 класс
Алгебра
Английский
Биология
География
Геометрия
Информатика
История
Литература
Математика
Обществознание
Русский
Физика
Химия
8 класс
Алгебра
Английский
Биология
География
Геометрия
Информатика
История
Литература
Математика
Обществознание
Русский
Физика
Химия
7 класс
Алгебра
Английский
Биология
География
Геометрия
Информатика
История
Литература
Математика
Обществознание
Русский
Физика
6 класс
Английский
Биология
География
Информатика
История
Литература
Математика
Обществознание
Русский
5 класс
Английский
Биология
География
Информатика
История
Литература
Математика
Обществознание
Русский
4 класс
Английский
Окр. мир
Информатика
Литература
Математика
Русский
3 класс
Английский
Окр. мир
Информатика
Литература
Математика
Русский
2 класс
Английский
Окр. мир
Литература
Математика
Русский
ГДЗ по фото 📸
Диктанты
Таблицы
Сочинения
Анализ стихотворения
Изложения
Краткие содержания
Читательский дневник
Биография автора
Конспекты уроков
Банк заданий
Пословицы
Блог
Контрольные задания
>
Докажите, что площадь описанного многоугольника равна половине произведения его периметра на радиус вписанной окружности.
Вопрос:
Докажите, что площадь описанного многоугольника равна половине произведения его периметра на радиус вписанной окружности.
Смотреть решения всех заданий с листа
Ответ:
Площадь описанного многоугольника вычисляется как произведение радиуса вписанной окружности на полупериметр многоугольника. Полупериметр равен половине периметра, откуда следует, что площадь равна половине произведения периметра на радиус.
Сократить
Перефразировать
Добавить текст
Озвучить
Вернуть оригинал
ГДЗ по фото 📸
👍
👎
Подать жалобу Правообладателю
ФИО:
Телефон:
Емаил:
Полное описание сути нарушения прав (почему распространение данной информации запрещено Правообладателем):
Похожие
Докажите, что если в параллелограмме можно вписать окружность, то этот параллелограмм — ромб.
Сумма двух противоположных сторон описанного четырёхугольника равна 12 см, а радиус вписанной в него окружности равен 5 см. Найдите площадь четырёхугольника.
Сумма двух противоположных сторон описанного четырёхугольника равна 10 см, а его площадь — 12 см². Найдите радиус окружности, вписанной в этот четырёхугольник.
Докажите, что в любой ромб можно вписать окружность.