Вопрос:

58 гольном треугольнике АВС с прямым углом С внешний угол при вершине А равен 120°, AC + AB = 18 см. Найдите АС и АВ.

Смотреть решения всех заданий с листа

Ответ:

Рассмотрим треугольник ABC. Внешний угол при вершине A равен 120°, следовательно, внутренний угол при вершине A равен 180° - 120° = 60°.

Так как угол C прямой (90°), то угол B равен 180° - 90° - 60° = 30°.

Пусть AC = x, тогда AB = 18 - x.

В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы, значит, AC = 1/2 AB.

$$x = \frac{1}{2}(18 - x)$$.

Решим уравнение:

$$2x = 18 - x$$

$$3x = 18$$

$$x = 6 \text{ см}$$.

AC = 6 см.

AB = 18 - 6 = 12 см.

Ответ: AC = 6 см, AB = 12 см.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие