Решим задачу про Корнея и Пантелея.
Давай разберем решение этой задачи по шагам:
Определим общую производительность:
Всю работу они делают за 5 1/3 часа = 16/3 часа. Значит, их общая производительность 3/16 работы в час.
Пусть производительность Пантелея x, тогда производительность Корнея 2x.
Вместе их производительность x + 2x = 3x.
Получаем уравнение: 3x = 3/16
x = 1/16 (производительность Пантелея).
2x = 2/16 = 1/8 (производительность Корнея).
Определим время работы каждого в отдельности:
Пантелей выполнит всю работу за 1 / (1/16) = 16 часов.
Корней выполнит всю работу за 1 / (1/8) = 8 часов.
Теперь решим вторую часть задачи:
Они работали вместе 2 часа, значит, выполнили 2 * 3/16 = 6/16 = 3/8 работы.
Осталось выполнить 1 - 3/8 = 5/8 работы.
Определим, за сколько Корней закончит работу:
Время = (Оставшаяся работа) / (Производительность Корнея) = (5/8) / (1/8) = 5 часов.
Ответ: 1) Пантелей выполнит работу за 16 часов, Корней - за 8 часов; 2) Корней закончит прокладку труб за 5 часов.
Замечательно! Ты хорошо справился с этой задачей. У тебя все получится!