Решение:
а) cos α = 1/2
Так как \(\sin^2 α + cos^2 α = 1\), то
\[\sin^2 α = 1 - cos^2 α = 1 - (\frac{1}{2})^2 = 1 - \frac{1}{4} = \frac{3}{4}\]
\[\sin α = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}\]
\[\tan α = \frac{\sin α}{cos α} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}\]
б) cos α = 2/3
\[\sin^2 α = 1 - cos^2 α = 1 - (\frac{2}{3})^2 = 1 - \frac{4}{9} = \frac{5}{9}\]
\[\sin α = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}\]
\[\tan α = \frac{\sin α}{cos α} = \frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}} = \frac{\sqrt{5}}{2}\]
в) sin α = \(\frac{\sqrt{3}}{2}\)
\[\cos^2 α = 1 - sin^2 α = 1 - (\frac{\sqrt{3}}{2})^2 = 1 - \frac{3}{4} = \frac{1}{4}\]
\[\cos α = \sqrt{\frac{1}{4}} = \frac{1}{2}\]
\[\tan α = \frac{\sin α}{cos α} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}\]
г) sin α = 1/4
\[\cos^2 α = 1 - sin^2 α = 1 - (\frac{1}{4})^2 = 1 - \frac{1}{16} = \frac{15}{16}\]
\[\cos α = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{4}\]
\[\tan α = \frac{\sin α}{cos α} = \frac{\frac{1}{4}}{\frac{\sqrt{15}}{4}} = \frac{1}{\sqrt{15}} = \frac{\sqrt{15}}{15}\]