Найдите косинус угла между векторами b = 6m - n и с = m + 3n, если m ⊥ n и |m| = |n| = 1.
- $$b = 6m - n$$
$$c = m + 3n$$
- Скалярное произведение b и c: $$(b, c) = (6m - n, m + 3n) = 6(m, m) + 18(m, n) - (n, m) - 3(n, n) = 6|m|^2 + 17(m, n) - 3|n|^2$$.
- Т.к. m ⊥ n, то (m, n) = 0.
- Т.к. |m| = |n| = 1, то $$|m|^2 = |n|^2 = 1$$.
- $$(b, c) = 6 \cdot 1 + 17 \cdot 0 - 3 \cdot 1 = 6 - 3 = 3$$.
- $$|b| = \sqrt{(6m - n, 6m - n)} = \sqrt{36|m|^2 - 12(m, n) + |n|^2} = \sqrt{36 \cdot 1 - 12 \cdot 0 + 1} = \sqrt{37}$$.
- $$|c| = \sqrt{(m + 3n, m + 3n)} = \sqrt{|m|^2 + 6(m, n) + 9|n|^2} = \sqrt{1 + 6 \cdot 0 + 9 \cdot 1} = \sqrt{10}$$.
- $$cos(b, c) = \frac{(b, c)}{|b| \cdot |c|} = \frac{3}{\sqrt{37} \cdot \sqrt{10}} = \frac{3}{\sqrt{370}} = \frac{3\sqrt{370}}{370}$$.
Ответ: $$\frac{3\sqrt{370}}{370}$$.