Пусть x – длина боковой стороны равнобедренного треугольника. Тогда основание равно x + 7.
Периметр треугольника – это сумма длин всех его сторон. В равнобедренном треугольнике две боковые стороны равны, поэтому периметр равен:
$$P = x + x + (x + 7)$$ $$49 = 2x + (x + 7)$$ $$49 = 3x + 7$$
Решим уравнение относительно x:
$$3x = 49 - 7$$ $$3x = 42$$ $$x = \frac{42}{3}$$ $$x = 14$$
Итак, длина боковой стороны равна 14 см.
Основание равно:
$$x + 7 = 14 + 7 = 21 \text{ см}$$
Ответ: Боковые стороны треугольника равны 14 см, основание равно 21 см.