Вопрос:

8. Найдите значение выражения \[\frac{n^5}{n^{\frac{1}{6}} \cdot n^{\frac{1}{12}} \cdot n^4}\] при n = 64.

Ответ:

Для начала упростим выражение, используя свойства степеней: \[\frac{n^5}{n^{\frac{1}{6}} \cdot n^{\frac{1}{12}} \cdot n^4} = \frac{n^5}{n^{\frac{1}{6} + \frac{1}{12} + 4}} = \frac{n^5}{n^{\frac{2}{12} + \frac{1}{12} + \frac{48}{12}}} = \frac{n^5}{n^{\frac{51}{12}}} = n^{5 - \frac{51}{12}} = n^{\frac{60}{12} - \frac{51}{12}} = n^{\frac{9}{12}} = n^{\frac{3}{4}}\] Теперь подставим n = 64: \[64^{\frac{3}{4}} = (2^6)^{\frac{3}{4}} = 2^{\frac{18}{4}} = 2^{\frac{9}{2}} = 2^{4.5} = 2^4 \cdot 2^{0.5} = 16\sqrt{2}\] Ответ: **16$$\sqrt{2}$$**
Смотреть решения всех заданий с фото

Похожие