1. Найдем значение выражения $$\frac{(a+4)^2+2(a+4)+1}{a+5}$$
Преобразуем числитель дроби, используя формулу квадрата суммы: $$(a+b)^2 = a^2 + 2ab + b^2$$
$$(a+4)^2+2(a+4)+1 = (a+4+1)^2 = (a+5)^2$$
Тогда выражение примет вид: $$\frac{(a+5)^2}{a+5}$$ Сократим дробь на $$a+5$$.
$$\frac{(a+5)^2}{a+5} = a+5$$Таким образом, значение выражения равно $$a+5$$.
При $$a = -0.48$$ получим: $$a+5 = -0.48 + 5 = 4.52$$
Ответ: 4.52