Вопрос:

Найдите значение выражения $$0,8^{\frac{1}{7}} \cdot 5^{\frac{2}{7}} \cdot 20^{\frac{6}{7}}$$.

Ответ:

Преобразуем выражение: $$0,8^{\frac{1}{7}} \cdot 5^{\frac{2}{7}} \cdot 20^{\frac{6}{7}} = (\frac{4}{5})^{\frac{1}{7}} \cdot 5^{\frac{2}{7}} \cdot (4 \cdot 5)^{\frac{6}{7}} = \frac{4^{\frac{1}{7}}}{5^{\frac{1}{7}}} \cdot 5^{\frac{2}{7}} \cdot 4^{\frac{6}{7}} \cdot 5^{\frac{6}{7}} = 4^{\frac{1}{7} + \frac{6}{7}} \cdot 5^{-\frac{1}{7} + \frac{2}{7} + \frac{6}{7}} = 4^{\frac{7}{7}} \cdot 5^{\frac{7}{7}} = 4^1 \cdot 5^1 = 4 \cdot 5 = 20$$ Ответ: 20
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие