Вопрос:

1. Найдите значение выражения: a) \sqrt[3]{\frac{3^9}{0,125}} ; б) \sqrt[4]{3^8 \cdot 2^4}; в) \sqrt[8]{\frac{2^8 \cdot 3^{24}}{5^{16}}}.

Ответ:

Решение задания 1

а)

Сначала преобразуем десятичную дробь в обыкновенную: $$0,125 = \frac{125}{1000} = \frac{1}{8}$$

Теперь подставим это значение в выражение под корнем: $$\sqrt[3]{\frac{3^9}{\frac{1}{8}}} = \sqrt[3]{3^9 \cdot 8} = \sqrt[3]{3^9 \cdot 2^3} = 3^{\frac{9}{3}} \cdot 2^{\frac{3}{3}} = 3^3 \cdot 2 = 27 \cdot 2 = 54$$

Ответ: $$54$$


б)

Вычислим значение выражения: $$\sqrt[4]{3^8 \cdot 2^4} = 3^{\frac{8}{4}} \cdot 2^{\frac{4}{4}} = 3^2 \cdot 2 = 9 \cdot 2 = 18$$

Ответ: $$18$$


в)

Преобразуем выражение под корнем: $$\sqrt[8]{\frac{2^8 \cdot 3^{24}}{5^{16}}} = \frac{2^{\frac{8}{8}} \cdot 3^{\frac{24}{8}}}{5^{\frac{16}{8}}} = \frac{2 \cdot 3^3}{5^2} = \frac{2 \cdot 27}{25} = \frac{54}{25} = 2,16$$

Ответ: $$2,16$$

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие