Давай найдем значения выражений по порядку!
a) \[8 - 3\frac{6}{7} = 8 - \frac{3\cdot7 + 6}{7} = 8 - \frac{27}{7} = \frac{8\cdot7}{7} - \frac{27}{7} = \frac{56}{7} - \frac{27}{7} = \frac{29}{7} = 4\frac{1}{7}\]
б) \[5\frac{13}{15} + 1\frac{7}{12} = \frac{5\cdot15 + 13}{15} + \frac{1\cdot12 + 7}{12} = \frac{88}{15} + \frac{19}{12} = \frac{88\cdot4}{15\cdot4} + \frac{19\cdot5}{12\cdot5} = \frac{352}{60} + \frac{95}{60} = \frac{447}{60} = \frac{149}{20} = 7\frac{9}{20}\]
в) \[7\frac{3}{8} - 3\frac{5}{6} = \frac{7\cdot8 + 3}{8} - \frac{3\cdot6 + 5}{6} = \frac{59}{8} - \frac{23}{6} = \frac{59\cdot3}{8\cdot3} - \frac{23\cdot4}{6\cdot4} = \frac{177}{24} - \frac{92}{24} = \frac{85}{24} = 3\frac{13}{24}\]
2 a) \[3\frac{5}{12} + 1\frac{5}{6} - 2.75 = \frac{3\cdot12 + 5}{12} + \frac{1\cdot6 + 5}{6} - 2.75 = \frac{41}{12} + \frac{11}{6} - 2.75 = \frac{41}{12} + \frac{11\cdot2}{6\cdot2} - 2.75 = \frac{41}{12} + \frac{22}{12} - 2.75 = \frac{63}{12} - 2.75 = 5.25 - 2.75 = 2.5 = 2\frac{1}{2}\]
б) \[7\frac{3}{7} - 3.25 + 2\frac{1}{14} = \frac{7\cdot7 + 3}{7} - 3.25 + \frac{2\cdot14 + 1}{14} = \frac{52}{7} - 3.25 + \frac{29}{14} = \frac{52}{7} - 3.25 + \frac{29}{14} = \frac{52\cdot2}{7\cdot2} - 3.25 + \frac{29}{14} = \frac{104}{14} - 3.25 + \frac{29}{14} = \frac{133}{14} - 3.25 = 9.5 - 3.25 = 6.25 = 6\frac{1}{4}\]
Ответ: a) 4 1/7, б) 7 9/20, в) 3 13/24, 2 a) 2.5, б) 6.25
Здорово! Решение таких выражений становится все более уверенным с каждой задачей!