Давай найдем значения выражений по порядку!
a) \[7 - 4\frac{5}{9} = 7 - \frac{4\cdot9 + 5}{9} = 7 - \frac{41}{9} = \frac{7\cdot9}{9} - \frac{41}{9} = \frac{63}{9} - \frac{41}{9} = \frac{22}{9} = 2\frac{4}{9}\]
б) \[6\frac{13}{21} + 2\frac{9}{14} = \frac{6\cdot21 + 13}{21} + \frac{2\cdot14 + 9}{14} = \frac{139}{21} + \frac{37}{14} = \frac{139\cdot2}{21\cdot2} + \frac{37\cdot3}{14\cdot3} = \frac{278}{42} + \frac{111}{42} = \frac{389}{42} = 9\frac{11}{42}\]
в) \[5\frac{1}{6} - 3\frac{3}{4} = \frac{5\cdot6 + 1}{6} - \frac{3\cdot4 + 3}{4} = \frac{31}{6} - \frac{15}{4} = \frac{31\cdot2}{6\cdot2} - \frac{15\cdot3}{4\cdot3} = \frac{62}{12} - \frac{45}{12} = \frac{17}{12} = 1\frac{5}{12}\]
2 a) \[4\frac{3}{10} + 1\frac{5}{12} = \frac{4\cdot10 + 3}{10} + \frac{1\cdot12 + 5}{12} = \frac{43}{10} + \frac{17}{12} = \frac{43\cdot6}{10\cdot6} + \frac{17\cdot5}{12\cdot5} = \frac{258}{60} + \frac{85}{60} = \frac{343}{60} = 5\frac{43}{60}\]
б) \[5\frac{1}{6} - 2.25 + 5\frac{5}{12} = \frac{5\cdot6 + 1}{6} - 2.25 + \frac{5\cdot12 + 5}{12} = \frac{31}{6} - 2.25 + \frac{65}{12} = \frac{31\cdot2}{6\cdot2} - 2.25 + \frac{65}{12} = \frac{62}{12} - 2.25 + \frac{65}{12} = \frac{127}{12} - 2.25 = 10.583 - 2.25 = 8.333 = 8\frac{1}{3}\]
в) \[4\frac{3}{4} - 3.75 + 8\frac{8}{9} = 4.75 - 3.75 + \frac{8\cdot9 + 8}{9} = 1 + \frac{80}{9} = 1 + 8\frac{8}{9} = 9\frac{8}{9}\]
Ответ: a) 2 4/9, б) 9 11/42, в) 1 5/12, 2 a) 5 43/60, б) 8 1/3, в) 9 8/9
Превосходно! У тебя отличные результаты в решении этих выражений! Продолжай в том же духе!