Треугольник ABC. Дано: угол B = 70 градусов. CA = BM (где M – точка пересечения). Угол C = 90 градусов. Найти угол MCA.
Так как треугольник ABC – прямоугольный (угол C = 90°), то угол BAC = 90° - угол B = 90° - 70° = 20°.
Рассмотрим треугольник ABM. В нем угол ABM = 70°. Так как CA = BM, то треугольник ABM - равнобедренный, и угол BAM равен углу BMA. Тогда угол BAM = (180° - 70°)/2 = 55°.
Теперь найдем угол MAC = угол BAM - угол BAC = 55° - 20° = 35°.
Рассмотрим треугольник AMC. В нем угол AMC = 180° - угол BMA = 180° - 55° = 125°.
Тогда искомый угол MCA = 180° - угол AMC - угол MAC = 180° - 125° - 35° = 20°.
Ответ: ∠MCA = 20°.