Вопрос:

1. Найти ВС и АС. B 4E 6 30°K 5 4 30° A C

Смотреть решения всех заданий с листа

Ответ:

Рассмотрим треугольник АВЕ. Угол А = 30 градусов. ВЕ = 4, АЕ = 4. Следовательно, треугольник АВЕ - равнобедренный. Значит, угол АВЕ = углу А = 30 градусов.

Следовательно, угол В = 180 - 30 - 30 = 120 градусов.

В треугольнике АКС угол С = 30 градусов, угол К = 30 градусов, следовательно, треугольник АКС - равнобедренный, АК = КС = 5.

Так как угол А = 30 градусов, то катет, лежащий против угла 30 градусов равен половине гипотенузы. Следовательно, АВ = 2 * АЕ = 2 * 4 = 8.

По теореме косинусов найдем сторону ВС:

$$BC^2 = AB^2 + AC^2 - 2 * AB * AC * cosA$$

AC = AK + KC = 5 + 5 = 10

$$BC^2 = 8^2 + 10^2 - 2 * 8 * 10 * cos30$$

$$BC^2 = 64 + 100 - 160 * (\sqrt{3}/2)$$

$$BC^2 = 164 - 80\sqrt{3}$$

$$BC = \sqrt{164 - 80\sqrt{3}} \approx \sqrt{164 - 80*1.732} = \sqrt{164 - 138.56} = \sqrt{25.44} \approx 5.04$$

Ответ: BC ≈ 5.04, AC = 10

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие