1) Сумма острых углов в прямоугольном треугольнике равна 90°. Если один из острых углов равен 60°, то второй острый угол равен 90° - 60° = 30°.
2) Пусть гипотенуза будет с, а меньший катет будет b. Разность между ними равна 18 см, поэтому можно записать:
c − b = 18
3) В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. Этот катет является меньшим катетом:
b = c/2
4) Теперь у нас есть система из двух уравнений:
c − b = 18
b = c/2
Решим систему уравнений:
c − c/2 = 18
c/2 = 18
c = 36 (гипотенуза)
Теперь найдем меньший катет:
b = c/2 = 36/2 = 18
Ответ: Гипотенуза равна 36 см, меньший катет равен 18 см.