Так как AC и BD - диаметры окружности с центром O, то \(\angle ACB\) – вписанный угол, опирающийся на дугу AB.
Центральный угол, опирающийся на ту же дугу, равен удвоенному вписанному углу. Следовательно, \(\angle AOB = 2 \cdot \angle ACB = 2 \cdot 53^\circ = 106^\circ\).
Угол AOD является смежным с углом AOB. Сумма смежных углов равна 180°. Поэтому, \(\angle AOD = 180^\circ - \angle AOB = 180^\circ - 106^\circ = 74^\circ\).
**Ответ: 74**