Пусть AB = x, AD = y. Тогда BC = AD = y, DC = AB = x.
Так как AP = SC = 5 и BS = CF = 4, то y = AP + PD = SC + BS = 5 + BS, то есть BS = y - 5 = 4, значит y = 9. Так как PD = AD - AP, PD = 9 - 5 = 4. Аналогично, SC = 5, CF = 4, BF = BC - FC = 9 - 4 = 5.
Рассмотрим треугольник APD и BFS. Они подобны, так как \(\angle APD = \angle BFS\) как вертикальные углы и \(\angle ADP = \angle FBC = 90^\circ\).
Значит, \(\frac{AP}{BF} = \frac{PD}{BS}\), \(\frac{5}{x} = \frac{4}{4}\), откуда x = \(\frac{5}{1}\) = 5.
Тогда, периметр прямоугольника ABCD равен 2(AB + AD) = 2(5 + 9) = 2 * 14 = 28.
Ответ: 28
Убрать каракули