Используем формулу площади треугольника, выраженную через длины сторон и радиус описанной окружности:
$$S = \frac{abc}{4R}$$
Выразим сторону b:
$$b = \frac{4RS}{ac}$$
Подставим известные значения a, c, S и R:
$$b = \frac{4 \cdot \frac{65}{6} \cdot 65}{13 \cdot 20} = \frac{4 \cdot 65 \cdot 65}{6 \cdot 13 \cdot 20} = \frac{2 \cdot 65 \cdot 65}{3 \cdot 13 \cdot 20} = \frac{2 \cdot 5 \cdot 13 \cdot 13}{3 \cdot 13 \cdot 4 \cdot 5} = \frac{13}{6}$$
Ответ: 65/6